
4 CROSSTALK The Journal of Defense Software Engineering January 1999

Increasingly, we live in a complex
world where software is indispens-
able to everyone’s life. And increas-

ingly, we are frustrated by the software
with which we are forced to live.

Consider if a carpenter were com-
pelled to work with tools as unreliable,
complex, and generally inaccessible as
most of our computers. Can you imag-
ine turning on a sander and getting a
message that says, “general protection
fault,” at which point the disk flies off
and the whole thing self-destructs? Why
do we put up with this from tools
which, for many of us, are as indispens-
able as a sander is to someone who
makes a living by woodworking?

If we want quality software, we must
accept responsibility for how it is devel-
oped. Improving what you build means
improving how you build.

The DoD’s Environment
The DoD is a large and complex organi-
zation. There are 1.4 million active duty
men and women in the uniformed ser-
vices and about 800,000 civilians. Every
year, we recruit around 200,000 new
people to join the armed forces and
separate about 220,000. So approxi-
mately 30 percent of our organization is
either coming or going every year. We
have about 250 major installations
worldwide. We operate 550 public util-
ity systems—gas, water, electricity, and
natural gas distribution.

We support one of the larger school
systems in the world comprising 126
high schools and elementary schools. We
are the world’s largest day-care pro-
vider—300,000 children are enrolled in
DoD day-care centers.

We have 28,000 separate computer
systems that we are tracking for the
year 2000; 2,800 of them are mission
critical. We disperse 5 million pay-
checks and about 400,000 bonds and
about 600,000 travel vouchers and
800,000 contract actions every month.
In Columbus, Ohio, where we do our
large contract management administra-
tion, there are about 390,000 contracts
under administration. We disburse the
staggering amount of about $43 mil-
lion an hour.

We sustain operations in every time
zone. Today, there are about 120,000
military personnel deployed around the
world, in addition to the 200,000 who
are permanently stationed overseas. We
operate over 400,000 vehicles—every-
thing from sedans and buses to the
street sweepers used to clean runways to
combat vehicles to tanks to armored
vehicles.

As an organization, one of our chal-
lenges is to concurrently manage about
70 years of technology. We operate, on a
daily basis, aircraft that were designed
back in the early 1950s, and we still
have to maintain them, buy spare parts
for them, and keep them updated. At
the same time, we are working on re-
search and development programs for
systems that will not be fielded until
between 2015 and 2020. To manage
that spectrum of technology is a con-
stant challenge.

In information technology, we oper-
ate some of the world’s most advanced
computers, and yet, just last year, we
moved a number of Burroughs punch
card readers to a new megacenter be-
cause we are still operating punch cards
for some business applications. We
manage an astounding spectrum of
technology. The DoD is not only the

largest but also is probably the most
complex organization in the world.

Yet, this is an organization that has
had its budget cut for 15 consecutive
years, has undergone significant reduc-
tions, is operating at 46 percent of the
budget resources it had only 12 and 13
years ago, and has a third of its person-
nel coming and going in any one year.
And still, it is an organization that is
able, within a month, to send 60,000
people to the Persian Gulf along with
400 combat aircraft and 500 cruise
missiles and could carry out war tomor-
row if necessary.

War-Fighting Changes
We have been engaged in an unprec-
edented change in the way we think
about warfare. It has been going on for
some time, and it is moving into a highly
sophisticated dimension. The change
accelerated in the late 1970s and the
early 1980s when we were starting to
bring microprocessors into weapons
systems.

We are on the edge of breaking
through in what we call network-centric
warfare. To put it bluntly, the DoD is in
the business of destroying things. In
warfare, we try to do that in a focused
way without doing a great deal of dam-
age to things we do not want to destroy.
We have done that before by putting
extremely lethal and highly accurate
capabilities in the hands of whoever was
doing the shooting at the time. We are
now moving into a more interesting and
highly leveraged dimension where the
person who launches the missile does not
have to see the target. We are going to be
sharing information across a network and
still be able to attack and destroy an
opponent. This dramatically improves
the survivability of our own forces, of

Improving Software Engineering Practice
Patricia Sanders

Office of the Undersecretary of Defense for Acquisition and Technology

This article is based on a speech given at the 1998
Software Engineering Symposium in Pittsburgh,
Pa. Sept. 16, 1998.

The complexity and size of the Department of Defense (DoD) necessitates an extensive,
software-dependent computer network; however, past experience has shown that software
is rarely defect free. In an organization that requires pinpoint accuracy to save lives, func-
tional software is an area in which excellence cannot be compromised. The only way to
improve software’s performance is to improve the way in which software is developed.

CROSSTALK The Journal of Defense Software Engineering 5January 1999

Improving Software Engineering Practice

course. It is going to be revolutionary.
The situational awareness that will be on
our side of the battlefield will be three or
four orders of magnitude better than our
opponent’s. We call this information
dominance.

In the past, the dilemma of warfare
was always how to bring mass together
for its effect over your opponent without
giving your opponent lots of targets at
which to shoot. It is the classic dilemma.
One of the reasons there were so many
casualties during the Civil War was that
firepower technology had progressed so
much farther than communications
technology. We were still massing people
close to each other, side by side, so the
soldiers could hear shouted orders. Fire-
power technology had advanced, how-
ever, so that cannon could mow people
down. We are now going to be in a
wholly different world where people do
not have to see each other and yet, they
can operate together as a combined arms
team. What we expect to be able to do is
quite dramatic.

Importance of Software
So a new breed of “knowledge warriors”
has begun to emerge who recognize that
knowledge can win or prevent wars. And
this is causing fundamental changes in
what is important to our war-fighting
capability.

Today, about 10 percent of the
weight and one-third of the cost of
modern combat aircraft are composed
of electronics and related components.
Principal among the latter is software—
a substance that weighs nothing but
costs inordinately.

There has been nothing like the
headlong rush to software since the
similar rush to electronics after World
War I. The average automobile of today
has more software in it than the first
Apollo spacecraft to arrive at the moon
30 years ago.

In the Gulf War, television cameras,
ravenous for dramatic visuals, focused
on F-14 aircraft roaring off the decks of
carriers, Apache helicopters swooping
over the desert, M-1A1 Abrams tanks
growling over the sands, and Tomahawk
missiles singling out their targets. Pieces
of hardware became overnight stars. But

the real star was the invisible software
that processed, analyzed, and distributed
data, though no television watcher ever
saw those who produced and maintained
it—America’s software soldiers.

Software is changing military bal-
ances in the world. Today, weapons
systems are mounted on or delivered by
what we call “platforms”—a missile, an
airplane, a ship, or even a truck. What
we are learning is that cheap, low-tech-
nology platforms that are operated by
poor, small nations can now deliver
high-technology, smart firepower if the
weapons are equipped with smart soft-
ware. Stupid bombs can have their “IQ”
raised by the addition of retrofitted
components dependent on software for
their manufacture or operation.

In previous eras, military spies paid
special attention to an adversary’s ma-
chine tools because they were needed to
make other tools needed to produce
arms. Today, the “machine tool” that
counts most is the software used to
manufacture the software that manufac-
tures software, because much of the
processing of data into practical infor-
mation and knowledge depends on it.
The sophistication, flexibility, and secu-
rity of the military software base is
crucial.

Software Costs
The DoD does not track software
spending independently of other ex-
penses. But, Federal Sources, Inc., a
Virginia-based marketing firm that
tracks government spending, completed
a survey around September 1997, which
concluded that by 2002, the DoD will
spend more than $20 billion annually
on software used for weapons systems,
information technologies, and com-
mand, control, communications, and
intelligence systems (not including per-
sonnel, management, and non-tactical
systems). The Federal Sources review
estimates military aircraft require by far
the largest software expenditures,
roughly $5 billion in 1998. Ships sail in
at a distant second with barely more
than $1 billion. Ordinance and weap-
ons, lumped together in one category, tie
for last with vehicles at less than $1
billion.

A study by the Electronics Industries
Association estimated in 1995 that the
DoD would spend $42.5 billion on
computer systems, of which $35.7 bil-
lion would be on software—about two-
thirds of that on maintenance. These
analyses are important in that they illus-
trate the increasing reliance on software
for warfare in the information age.
Some, in fact, predict a future in which
military hardware procurement becomes
secondary to software purchases.

Costs of Software Failure
Information or knowledge superiority
may win wars, but that superiority is
exceedingly fragile. In the past, when
you had 5,000 tanks and your enemy
had only 1,000, you may have had a
ratio of 5-to-1 superiority. In informa-
tion war, you can have a ratio of 100-
to-1 superiority, but it can all turn on a
fuse or a lie or on your ability to protect
your advantage from those who want to
steal it.

The key reason for this fragility is
that knowledge, as a resource, differs
from all the others. It is inexhaustible. It
can be used by both sides simulta-
neously, and it is nonlinear, which means
that small inputs can cause dispropor-
tionate consequences. A small bit of the
right information can provide an im-
mense and strategic or tactical advan-
tage, whereas the denial of a small bit of
information can have catastrophic ef-
fects.

Pentagon leaders have been increas-
ingly stunned upon learning that some
of our computer systems can be and
have been tampered with by hackers and
by military exercises that demonstrate
how easy it is for hackers to cripple U.S.
military and civilian computer networks.

But my issue is not so much one of
information assurance—although that is
decidedly a top priority for the DoD,
one with which the Software Engineer-
ing Institute (SEI) is providing major
assistance—rather, I want you to focus
on the implication that you succeed or
fail on the software. It does not matter
how much speed, or how much stealth,
or how much armor plating you have;
you will not succeed if the software does
not work.

6 CROSSTALK The Journal of Defense Software Engineering January 1999

Policy and Management

The cost of software failures can be
high. In the commercial world, a system
error in American Airlines scheduling
software that incorrectly showed flights
full resulted in a $50 million loss. Sys-
tem downtime for American Express
costs $167,000 per minute; for Charles
Schwab, the penalty is $1 million per
minute.

The DoD’s damages can be more
expensive. Under the START II treaty
(Strategic Arms Reduction Talks), three-
quarters of our nuclear deterrent is in
our fleet ballistic missiles, the effective-
ness of which is in the hands of their
fire-control software.

So, I contend that software that does
not work is self-inflicted information
warfare. The policies, processes, and
practices that guide the development
and use of information technology in
general and software in particular are a
crucial component of our strategy.

Expectations
Unfortunately, our overall track record
for producing quality software is
underwhelming. There is a perception
that the DoD has a perfect record on
software development—we never get it
right.

According to the results of a study on
U.S. software development reported by
the Standish Group in 1996,
• In 1995, only 16 percent of software

projects were expected to finish on
time and within budget.

• In larger companies, only 9 percent
of the software projects will be com-
pleted on time and within budget.

• An estimated 53 percent of projects
will cost nearly 190 percent of their
original estimates.

• Projects completed by the largest
American organizations have only 42
percent of the originally proposed
features and functions.
These findings show slightly better

performance than an earlier DoD study.
In that analysis of DoD software devel-
opment projects that were originally
estimated to take between two and three
years to complete, there was, on average,
a 36-month schedule slip, and one-third
of all software programs were canceled
before completion.

Despite the real and potential ben-
efits software holds for us, expectations
of software performance differ in inter-
esting ways from expectations for hard-
ware performance.

A story going around has it that at a
recent computer exposition, Bill Gates
reportedly compared the computer in-
dustry to the automobile industry and
stated, “If GM had kept up with tech-
nology like the computer industry has,
we would all be driving $25 cars that got
1,000 miles per gallon.” General Motors
reportedly addressed this comment by
releasing the statement, “Yes, but would
you want your car to crash twice a day?”

A similar story has it that if software
engineers made automobiles, your car
would sometimes die on the freeway for
no reason, and you would accept this,
restart, and drive on. Occasionally, exe-
cuting a maneuver would cause your car
to stop and fail, and you would have to
reinstall the engine. For some strange
reason, unlike a carpenter’s tools, you
would accept this, too.

This sort of reliability might be ad-
equate in a word processor, but it hardly
seems acceptable in a weapons system or
where safety is a major consideration.
After all, a soldier without a weapon is at
best a tourist and more likely, a target.

Systems Engineering Process
To get good software, we need to build it
right. When we track successful software
developments, almost invariably, the
accomplishment can be linked to the
existence of good systems engineering
processes because it is the application of
the disciplined systems engineering
process that makes the difference in
achieving the functionality we seek—in
both hardware and software.

As Reuel Alder observed (CROSSTALK,
September 1998), “Discipline is no
fun—I consider day planners self-in-
flicted torture. My idea of a good day is
to wake up with no plan and accom-
plish more than humanly thought pos-
sible. The work would be intuitively
discovered as the day progressed. Cre-
ativity and spontaneity would be en-
hanced, and routine, repetitive activities
would be minimized. Each day would
be a fresh and exhilarating experience

filled with learning, personal growth,
and development. The variations would
be unlimited, and the success would be
phenomenal.

“But if you believe the last 40 years
of development data, this dream is not
achievable for most software projects.
Yet, we are still largely living in a dream
world where we think software can be
built by pure ‘artists’ who arrive at river’s
edge with no plans, and through sheer
talent can turn a pile of scrap iron into a
decent bridge.

“However, I have learned from un-
fortunate personal experience that al-
most all significant human achievements
require more than just talent and creativ-
ity. Decades of data prove it: Even the
best software artists do better work when
they start with a foundation of planning,
preparation, and discipline.”

Consider requirements management.
A 100-company survey by Standish
Group International found that 45 per-
cent of a software application’s features
are never used, 19 percent rarely used,
16 percent sometimes used, 13 percent
often used, and 7 percent always used.
Yet, in spite of the fact that most of an
application is seldom used, software gets
bigger all the time.

I have a cartoon in my office that
shows two individuals—presumably
software engineers—and one of them
says to the other as he is running out,
“You start coding; I’ll go find out what
they want.” Unfortunately, there is all
too much truth in this picture. Because
what is being developed is “only soft-
ware”—and everyone knows software is
easy to change—a disciplined require-
ments management process is all too
frequently lacking. Without require-
ments analysis upfront, however, the
results are unsatisfied needs, wasted
effort, and rework.

Software may be easy to change—at
least relative to bent metal—but it can
still be costly in both time and dollars. It
is estimated that rework is 40 percent of
the cost of development. Metrics col-
lected by Capers Jones indicate that the
cost and schedule impact of defects in
requirements are the most expensive of
all defects, followed by defects in top-

CROSSTALK The Journal of Defense Software Engineering 7January 1999

Improving Software Engineering Practice

level design (architecture), and finally by
defects in code.

We also do not develop software with
its lifecycle in mind. Much of the soft-
ware that is operational today will still be
in service several years from now. Over
the service life of software-intensive
aircraft and smart munitions, there is a
need for continuous improvement, cor-
rection, and addition of new capability
via software modification. Embedded
software in weapons system platforms
has evolved in operational and technical
impact to the point where upgrades
must be seen as major subsystems. The
effectiveness and efficiency of the process
for upgrading and otherwise modifying
embedded software has a major impact
on readiness. Each year, upgrades to the
B-1, F-15, and F-16 aircraft programs
cost nearly $200 million. When the
planned expenditures for the B-2, F-22,
and F-117 aircraft and the advanced
weapons are added in, that figure
doubles.

One definition I have seen for soft-
ware upgrade is you take old bugs out to
put new ones in. As I previously noted,
approximately 66 percent of the DoD’s
software costs are associated with main-
tenance. Almost all of the systems engi-
neering practices that have high leverage
for lowering the cost of maintenance are
practices that need to be implemented
during development. These include
• Development practices that reduce

the density of defects in the software
delivered into operation.

• Effective software test.
• A strong configuration management

program.
• Taking account early in the program

of the engineering environment and
processes that need to be in place for
sustainment.

SEI’s Contributions
SEI has successfully influenced commer-
cial technology for the DoD’s benefit.

SEI’s function, as defined in the
DoD Management Plan, is to develop

and transfer important technology to the
private sector so that the government
can benefit from a broader base of exper-
tise. Their work benefits both the DoD
and industry by helping to define, ana-
lyze, and improve operational processes
from the level of the individual engineer
to practices that apply across the entire
organization. They have achieved mea-
surable success.

SEI’s mission is to reduce the cost,
schedule, and technical and performance
risk associated with acquiring and build-
ing software. Simply put, SEI exists to
help us build software “better, faster, and
cheaper.”

But it must be predictably better,
faster, and cheaper—erratically better,
faster, and cheaper is not helpful to
achieve the DoD’s goals for information
superiority. Discipline in process and
product management is essential.

For fiscal 1999, we have worked
with SEI to define some focus areas for
initiatives.
• Commercial-off-the-shelf-based

systems.
• Survivable systems.
• Architecture trade-off analysis and

product-line practices.
• Continuing process improvement.

Conclusion and Summary
In closing, I will tell you a story about
the brass lamp that Secretary of Defense
William S. Cohen found in his office
when he first moved into the Pentagon.
When he rubbed the lamp, a genie
popped out and offered him one wish
(in a downsizing environment, you no
longer get three wishes). Cohen first
pointed to the large map covering the
wall and the numerous pins in the map
that indicated trouble spots around the
world and asked the genie to provide
stability to all those locations. The genie,
however, said that this was perhaps too
much even for a genie to accomplish. So
the secretary thought some more and
asked instead that the genie provide a
guarantee of error-free DoD software.

The genie, upon hearing this wish, said,
“Let’s look at that map again.”

I am more optimistic.
The information technology revolu-

tion is having a profound effect on all of
us. But never lose sight of the fact that
all this progress depends on one funda-
mental: No matter how technologically
sophisticated we are, it is people who
make knowledge and knowledge sharing
possible.

Real process improvement is not
easy, and anyone who believes otherwise
has never tried it or has never helped
make an improvement of lasting signifi-
cance. Learning better techniques and
technologies is only the beginning—
there are many human aspects through
which to work.

Process improvement pays big divi-
dends for those with the discipline to do
it right. With it, we can improve what
we build because we will have improved
how we build. ◆

About the Author
Patricia Sanders is the
director of test, systems
engineering, and evalua-
tion for the DoD, where
she is responsible for
ensuring the effective
integration of all engi-

neering disciplines into the system acquisi-
tion process. These include design, pro-
duction, manufacturing and quality,
acquisition logistics, modeling and simula-
tion, and software engineering, with em-
phasis on test and evaluation as the feed-
back loop. She is also responsible for
oversight of the DoD’s Major Range and
Test Facility Base and the development of
test resources such as instrumentation,
targets, and other threat simulators. She
has over 24 years experience in the DoD.
She holds a doctorate in mathematics from
Wayne State University and is a graduate
of the Senior Executive Fellow Program,
John F. Kennedy School of Government,
Harvard University.

POC: Brenda Zettervall
E-mail: zetterbt@acq.osd.mil
Voice: 703-695-2300

	Contents
	Short-Term Fix Casts Long Shadow…
	Forrest Brown…
	Managing Editor…
	Call for Articles …
	Year 2000 Compliance 1999 Reporting Requirements…
	Improving Software Engineering Practice…
	Patricia Sanders…
	Office of the Undersecretary of Defense for Acquisition and Technology…
	"The Network Is Down …"…
	Capt. Cathy Walter…
	Headquarters, Air Force Communications Agency…
	Inventory Your Network with…
	Simple Network Management Protocol…
	Estimating Y2K Rework Requirements…
	Lee Fischman, Galorath Incorporated…
	Patricia A. McQuaid, California Polytechnic State University…
	Effective Methods for Testing Year 2000 Compliance…
	William E. Perry…
	Quality Assurance Institute…
	Year 2000 (Y2K) Web Sites…
	Coming Events…
	Building Self-Reconfiguring Distributed Simulations Using Compensating Reconfiguration…
	Lt. Col. Don Welch, U.S. Military Academy…
	James Purtilo, University of Maryland…
	Real-World Java Development Experiences…
	A Background Data Collection System…
	Jerome B. Soller, James Clingenpeel, Patrick W. Hayes Jr.,…
	Mark Muday, Brian Larsen, and Tamara Jones…
	CogniTech Corporation…
	Outsourcing and Privatizing Information Technology…
	Re-examining the "Savings"…
	J. Michael Brower…
	Department of Justice, Immigration, and Naturalization Service…
	$^&$*(#)…

